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1,2-DIMETHYLSPIRO|2.3]JHEX-1-ENE BY ADDITION
OF CYCLOBUTYLIDENE TO 2-BUTYNE

Udo H. Brinker™” and Jiirgen Weber

Fakultit fiir Chemie der Ruhr-Universitit
4630 Bochum 1, Federal Republic of Germany

The first addition of a cyclobutylidene (carbenoid) to an alkyne is reported. By Cy+Csr-coupling the
spiro[2.3]hex-1-ene system 8is constructed. Furthermore, cyclobutylidene adds to methylenecyclopropa-
ne, its intramolecular reaction product, to give the novel dispiro[2.1.3.0]octane 11.

The formation of cyclopropane and cyclopropene rings by the addition of carbene(oid)s to alkenes and

alkynes is well documented.”* In contrast, only few examples have been reported for the construction of

spiro[2.nalkanes and spiro{2.n]alk-1-enes (n = 2,3} by reactions of small ring carbenes with C-C-double
and triple bonds.
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Thus, cyclopropylidenes (1) add intermolecuiarly to olefins only, when highly strained products
(allenes, tricyclic compounds etc.)” would result from intramolecular reaction pathways. ~ Cyclopro-
penylidenes (2) cannot stabilize themselves intramolecularly and, therefore, being nucleophilic
carbenes, undergo additions to electron deficient double bonds.?

Cyclobutenylidene (3)> contains a vinylcarbene as a structural subunit and thus can be regarded as a
stabilized carbene when compared with cyclobutylidene (4). In contrast to 4 which undergoes
intramolecular rearrangements to methylenecyclopropane und cyclobutene,™” in cyclobutenylidene (3)
the corresponding reactions leading to strained methylenecyclopropene and antiaromatic [,3-
cyclobutadiene have not been observed.’® Because intramolecular reactions are impeded, perchloro-
substituted 3 adds intermolecularly to olefins and 2-butyne to give spiro[2.3]hex-4-enes and
spiro[2.3]hexa-1,4-dienes, respectively, in yields of 35-40% 7% Here again, intermolecular reactions

compete with intramolecular ones if the latter are thermodynamically unfavorable.

We have recently shown® that cyclobutylidene (carbenoid) (4) adds to different substituted styrenes and
to cis- and frans-2-butene stereospecifically to afford spiro[2.3]hexanes in yields between 57 and
27%.

Herein, we report the first addition of cyclobutylidene (4) to an alkyne, whereby the spiro[2.3]hex-1-ene
ring system is constructed in one step through a C4+Cj-coupling.
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Cyclobutylidene (4), the Cy-building block, is easily generated from L. {-dibromocyclobutane (6) by
action of alkyllithium.” 6 can be obtained in three steps from cyclobutene ™ or more conveniently by a
two step synthesis developed by Paquetie.”’ Treatment of 1.3-dibromopropane with diethyl malonate in
aqueous sodium hyvdroxide solution with triethylbenzylammonium chloride (TEBA) vields 1.1-
cyclobutanedicarboxylic acid (5)'"!" which is converted to 6 by a double Hunsdiccker degrada-
tion.”
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I,1-Dibromocyclobutane (6} was treated with methyl-lithium in ether at -35°C in the presence of a
tenfold cxcess of 2-butyne. Methylenecyclopropane (10) and cyclobutene (9). the characteristic
intramolecular products of cyclobutylidene (4)™7'% where formed by ring contraction reaction and
competitive 1.2-hydrogen migration in vields of 30 and 4.5% " respectively,

In general, it has been found that the ratio of 10 and 9 always is in favor of 10 (2-6:1).%7 independent of
the method applicd for the gencration of cyclobutylidene (4). The ratio 10:9 (6.7:1) determined in the
reaction of 6 in the presence of 2-butyne corresponds well with the value obtained at the same
temperature under similar conditions. however. without any trapping reagent present (10:9
6:1)."

The possibility exists that after its intramolecular formation from 4. methylenecyelopropane (10) i
attacked intermolecularly by cyclobutylidene (4) te give the strained hitherto unknown dispirane 1L
[ndeed. after vpe separation (Fractonitril, 65°C) of the higher boiling fraction containing the
intermolecular products of the reaction of 6, ca. 6% of the novel dispiro[2.1.3.0Joctane (11)"*' could be
isolated. Furthermore. 11 was synthesized independently by reacting 6 with methyvlenecvclopropane
(10) under the conditions comparable to those when 2-butyne was used. Besides ca. 177 of
I-bromo-1-methyleyclobutane™ the CyH >-hvdrocarbon 11 was isolated in an unoptimized vield of
[R%.

<><Br CH,Li O<U
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As the main component of the intermolecular products, however, the expected 1,2-dimethylspi-
10[2.3]hex-1-ene (8)'* resulting from addition of 4 to the triple bond of 2-butyne was obtained after vpc
separation in a yield of 21%. Clearly, cyclobutylidene (carbenoid) (4) represents a ,,stabilized* carbene,
where therefore intermolecular reactions to 8 and 11 compete efficiently with intramolecular ones to 9
and 10.

Besides the hydrocarbons 8, 9, 10, and 11, three'® compounds containing a bromine atom could be
detected in the reaction mixture, While bromocyclobutane!® was formed only in trace amounts,
1-bromo-1-methylcyclobutane® could be isolated in 12% yield. These compounds are thought to result
from protonation and methylation, respectively, of the intermediate organolithio compound 7, formed
after halogen-metal exchange in 6.

In conclusion, our synthetic strategy of applying a C4+Cy-coupling for the construction of the
spiro[2.3]hex-1-ene system offers, although the yield thus far obtained has been only moderate,
exceptional brevity {only two steps from commercially available 1,1-cyclobutanedicarboxylic acid (5)],
making it superior to other known approaches to this interesting class of compounds.?!¥

In comparison to the plethora of compounds known comprising spiro-connected three-membered rings,
far fewer examples of polyspiranes containing cyclobutanes have been reported.”® This discrepancy
obviously stems from the fact that, in general, more efficient methods are available for the synthesis of
cyclopropanes. The use of cyclobutylidene (4) as a reactive Cy-spiroalkylation reagent might, therefore,
offer new perspectives for the construction of polyspiranes containing four-membered rings.
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